Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.071$
$w R$ factor $=0.198$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[3-(Trifluoromethyl)anilino]isobenzo-furan-1(3H)-one

Crystals of the title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{3}$, are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. In the structure, paired $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into $R_{2}^{2}(10)$ dimers. The hydrogen-bonded $R_{2}^{2}(10)$ dimers are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and generate $R_{6}^{4}(22)$ rings. The phthalide section of the molecule is planar and the dihedral angle between the phthalide group and the benzene ring is $56.31(17)^{\circ}$.

Comment

The present work is part of a structural study of compounds of 3-substituted phthalides and we report here the structure of 3-[3-(trifluoromethyl)anilino]isobenzofuran-1(3H)-one, (I) (Fig. 1).

(I)

The phthalide group (atoms $\mathrm{C} 1-\mathrm{C} 8 / \mathrm{O} 2$) is essentially planar, the largest deviation from the mean plane being 0.042 (3) \AA for atom C8. The dihedral angle between the mean planes of the phthalide group and the trifluoromethylphenyl ring is $56.31(17)^{\circ}$. This angle is $54.55(10)^{\circ}$ in 3-[2-(trifluoromethyl)anilino]phthalide (Odabaşoğlu \& Büyükgüngör, 2006a), $78.43(15)^{\circ}$ in 3-anilinophthalide (Odabaşoğlu \&

Figure 1
A view of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 30% probability level.

Received 11 August 2006 Accepted 14 August 2006

3-Substituted phthalides, Part XIX

A packing diagram for (I). Dashed lines indicate hydrogen bonds.

Figure 3
Part of the crystal structure of (I), with hydrogen bonds drawn as dashed lines, showing the formation of a hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. [Symmetry code: (i) $1-x, 1-y, 1-z]$.

Büyükgüngör, $2006 b$), and $54.55(10)^{\circ}$ in 3-(4-acetylanilino)phthalide (Odabaşoğlu \& Büyükgüngör, 2006c).

The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds, which generate $R_{2}^{2}(10)$ (Fig. 2) and $R_{6}^{4}(22)$ rings (Fig. 3) (Etter, 1990), and also by C$\mathrm{H} \cdots \pi$ interactions (Fig. 4, Table 2).

Figure 4

A packing diagram for (I), showing the $R_{6}^{4}(22)$, hydrogen bonds and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions represented as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) $1-x$, $1-y, 1-z$; (ii) $1-x, 1-y, z-\frac{1}{2}$; (iii) $\left.x, y-1, z+\frac{1}{2}\right]$.

Experimental

The title compound, (I), was prepared as described by Odabaşoğlu \& Büyükgüngör ($2006 d$), using phthalaldehydic acid and 3 -fluoromethylaniline as starting materials (yield 78%; m.p. 417-418 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a glacial acetic acid solution at room temperature.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}$
$M_{r}=293.24$
Monoclinic, $P 2_{1} / c$
$a=13.4659$ (9) A
$b=8.1794$ (7) \AA
$c=12.2649$ (8) A
$\beta=97.400(5)^{\circ}$
$V=1339.64(17) \AA^{3}$

Data collection

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: integration

$$
(X-R E D 32 ; \text { Stoe \& Cie, 2002) }
$$

$T_{\text {min }}=0.942, T_{\text {max }}=0.986$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.198$
$S=1.07$
2629 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.454 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.61 \times 0.42 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

14507 measured reflections 2629 independent reflections 1933 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.104
$$

$$
\theta_{\max }=26.0^{\circ}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0685 P)^{2}\right. \\
& +1.3237 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.40 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.011 \text { (3) }
\end{aligned}
$$

organic papers

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1$	$1.203(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.372(5)$
$\mathrm{C} 1-\mathrm{O} 2$	$1.344(4)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.393(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$122.0(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$111.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.8(3)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(4)$	$2.14(4)$	$2.962(4)$	$176(4)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots 1^{\mathrm{ii}}$	0.98	2.52	$3.264(4)$	133
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.98	3.31	$3.979(4)$	128
Symmetry codes:	(i) $\quad x,-y+\frac{3}{2}, z+\frac{1}{2} ;$	(ii)	$-x+1,-y+1,-z+1 ;$	(iii)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.	$C g 1$ is the centroid of the five-membered ring			

The NH group H atom (H1) was found in a difference Fourier map and refined freely. All other H atoms were refined using the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93$ for aromatic H atoms and $\mathrm{C}-\mathrm{H}=0.98 \AA$ for methine H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006a). Acta Cryst. E62, o4148-o4150. Odabaşoğlu, M. \& Büyükgüngör, O. (2006b). Acta Cryst. E62, o2943-o2944. Odabaşoğlu, M. \& Büyükgüngör, O. (2006c). Acta Cryst. E62, o4145-o4147. Odabaşoğlu, M. \& Büyükgüngör, O. (2006d). Acta Cryst. E62, o1879-o1881. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

